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Multi-Valued Motion Fields Estimation for Transparent Sequences with a
Variational Approach.

Alonso Raḿırez-Manzanares, Mariano Rivera, Pierre Kornprobst, and François Lauze

Abstract

Most optical flow algorithms provide flow fields as single valued functions of the image sequence domains.
Only a very few of them attempt to recover multiple motion vectors at given location, which is necessary when some
transparent layers are moving independently. In this report we introduce a novel framework for modeling multivalued
motion fields, and propose an energy minimization formulation with smoothing terms and terms implementing
velocity model competition. We illustrate the capabilities of this approach on synthetic and real sequences.
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I. I NTRODUCTION

There exists a very wide literature on apparent motion estimation, also called optical flow. Such a craze
for optical flow is notably due by the number of applications that require some motion estimation to
perform their tasks. We refer the reader to [6], [7], [2], [8]for some reviews on this topic. Although less
models are proposed concerning multiple motions, it is our conviction that considering more complex
stimuli will also bring some new solutions and ideas for simple optical flow estimation.

In this paper we propose a framework based on a finite samplingof the space of velocities. Having
chosen a finite set of admissible velocities, our goal is to recover a coherent spatio-temporal field that
encodes at each location the presence of one or more velocities from our sample set. To recover such a
field, we start with local velocity measurements, and then weminimize an energy function that encodes
our prior knowledge about the optical flow smoothness and theexpected number of motions (relatively
small, says one or two) at a particular site of the image.

The paper is organized as follows. Section II reviews and comments on some related works on
multiple motion estimations. Then Section III describes the proposed framework and related notations
are introduced. Section IV states a discrete variational model to handle multiple motions, and the role of
each term in the resulting energy is discussed. The performance of the approach is illustrated in Section
V, on synthetic, synthesized realistic and real sequences.We conclude and present furture work in Section
VI.

This work is simultaneously published as internal researchreport in theINSTITUT NATIONAL DE
RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE (INRIA), report number 5920, electronic
addresshttps://hal.inria.fr/inria-00077285 .

II. RELATED WORK ON MULTIPLE MOTION ESTIMATION FOR TRANSPARENTSEQUENCES

Motion estimation methods rely on a form for data conservation along motion trajectories and some
spatial or spatiotemporal regularity. Regularity in that context corresponds to some local smoothness
assumption of the motion field. The most elementary form of data conservation and probably the most
used is the Lambertian assumption, or brightness constancy, which states that intensities remain constant.
Given a sequencef(x, t) = f(x1, x2, t), then the conservation can be stated as theDisplayed Frame
Difference Equation(DFD)

f(x − u, t + 1) = f(x, t). (1)

or the linearization of it, theOptical Flow Constraint Equation(OFC)

(

u1 ∂

∂x1

+ u2 ∂

∂x2

+
∂

∂t

)

f(x, r) = (∇f(x, t))T





u1

u2

1



 = 0 (2)

where∇f = (fx1
, fx2

, ft)
T and(u1, u2) are the spatial components of the velocity vectoru. The gradient

∇f provides an affine constraint on the velocity space and is sometimes refereed to as a “motion constraint
vector.”

Although widely used, this model has a well known limited validity, intensities do not always remain
constant due to, among others, changing lightning conditions, specularities and clearly it cannot cope with
multiple motions, especially in the case of transparency.

Transparency can be modeled as a superposition of moving layers, a linear superposition meaning
addition of layer intensities, or a generalized one [9] where intensity addition is replaced by an operation
with similar formal algebraic properties such as multiplication in reflection. A simple superposition model
was introduced by Burtet al. in [10] for the case of two motions. The observed image sequence f is
assumed to come from the combinationf = P1 ⊕ P2 of two moving patternsP1 andP2 with respective
motionsu1 andu2, such that brightness constancy hold for each(Pi, ui):

Pi(x − ui, t + 1) = Pi(x, t)
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or

(∇Pi(x, t))T





u1
i

u2
i

1



 = 0.

In the mere case of linear superposition, i.e. when the combination operation⊕ is just a pixelwise addition
f = P1 + P2, then one gets

f(x − ui, t − 1) − f(x, t) = Pj(x − ui, t − 1) − Pj(x, t) =: Dj(x, t) (3)

where(i, j) = (1, 2) or (2, 1) and the displaced frame difference is non zeros, but one of the patterns has
been eliminated. In the case that the motion of each patternPi is constant on at least three frames at times
t−2, t−2 andt then the “difference pattern”Dj satisfies the DFD eDj(x−uj, t−1)−Dj(x, t) = 0 and
assuming thatui is known,uj can be computed by a single motion estimation technique. Burtet al. then
derive from this fact a three frames algorithm for estimating u1 andu2. They start, in a multiresolution
setting, with a coarse estimate ofu1 (for instance), and use a single motion algorithm on the resulting
difference patternD2 in order to compute an estimate ofu2. This estimate is then used to form the
difference patternD1 and get a new estimate ofu1 from it. This process is iterated until convergence.

A more thorough study and extension of this idea is proposed in a subsequent paper [11], where a
frequency domain interpretation, including multiresolution pyramid effects, is provided. In particular a
“dominant velocity extraction” mechanism is explained, and the latter is used by Irani and Peleg in [12]
(see also [13]).

Starting from the linear superposition principle, Shizawaand Mase explore in a series of papers [14],
[15], [4] a frequency domain, total least squares formulation of the multiple motion problems. They start
from the single motion case, the OFC constraint equation (2)is replaced by the spatiotemporallinear
homogeneous one

(∇f(x, t))T





u1

u2

u3



 = 0, ~u = (u1, u2, u3) 6= 0 (4)

or his frequency domain counterpart
~uT ωf̂(ω) = 0

whereω = (ω1, ω2, ω3) are the spatial and temporal frequencies andf̂ is the Fourier transform off ( the
2π

√
−1 multiplicative constant has been dropped). In that case, assuming constant motion, the best~u can

be retrieved as the minimizer of the energy

Esingle(~v) =
~vt

(

∫

ωωt|f̂(ω)2|dω
)

~v

~vt~v
∫

|f̂(ω)2|dω
.

This is a total least squares problem whose solution is givenas the (an) eigenvector corresponding to the
smallest eigenvalue of the3 × 3 symmetric, positive (semi-)definite matrix

A =

∫

ωωt|f̂(ω)2|dω

which is aStructure Tensor(see [16], [17], [18] for instance). For the recovery ofn motions at a given
location, the linear, first order, constraint (4) is replaced by an-th order,n-th multilinear one obtained by
“cascading” the linear first order ones. For example, in the two motions case, the pair( ~u1, ~u2) would be
a zero of the bilinear symmetric map

(~v1, ~v2) 7→ ~v2
TH(f)~v1 = 0 (5)

whereH is the spatiotemporal Hessian operator. Multilinear maps can be factored through linear ones
using the Tensor Product construction, and this leads them to a two stages formulation of the multiple
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motion recovery as: first a total least squares computation on then-th tensor power of the velocity space,
which singles out one element (in fact a line) of that space, and secondly a decomposition of this element
into a tensor product ofn velocities. A closed-form formula for that decomposition is provided in the case
n = 2, but becomes rapidly more complicated for higher orders. Very recently, Motaet al. have extended
these ideas in [19] and M̈uhlich and Aach have proposed an algebraic framework based on homogeneous
parts of symmetric algebras in [20].

The very algebraic nature of the motion constraint in frequency domain has lead Vernon to propose in
[21] an algorithm for the decoupling of moving patterns, forboth transparency and occlusion models. An
algorithm for the specific problem of reflections is proposedby Zou and Kambhamettu in [22].

The non homogeneous form (withu3
i = 1) of equation (5) provides the2-folds optical flow constraint

equationas introduced by Shizawa and Mase in [15]:
(

v1
1

∂

∂x1

+ v2
1

∂

∂x2

+
∂

∂t

)(

v1
2

∂

∂x1

+ v2
2

∂

∂x2

+
∂

∂t

)

f(x, t) = 0 (6)

This form is used by Liuet al. in [23] with Hermite polynomial based differentiation filters and specific
checks for the presence of single or multiple motions. Darell and Simoncelly “dualize” this constraint in
[24] in order to construct some Fourier “donuts” used to respond to one or more velocities. The 2-folds
optical flow constraint is used in the present work, in order to build local multiple motions “probes”.

The nonlinear form of this constraint then provides what onemay call the2-folds displaced frame
difference equation, and also used in this present work,

f(x + ~u1 + ~u2, t + 2) − f(x + ~u1, t + 1) − f(x + ~u2, t + 1) + f(x, t + 2) = 0. (7)

It can be extended to more than two motions and has been used asstarting point by several authors. For
instance, Stukeet al. use it in [3] to derive a block-matching approach to the multiple motion problem.
In their subsequent work [5], the authors regularized spatially the block matching solution by promoting
smooth solutions with a Markov Random Field (MRF) framework, improving the noise robustness of the
method. However, finding a solution results in acomputationally heavy minimization(because of the use
of a field of binary indicator variables) and complex (due to astatistical confidence test used to discern
the number of motions at each pixel).

Starting with equation (7), Pingaultet al. in [25] perform aN -th order Taylor expansion around velocity
values. A multi-resolution non linear least squares estimation is performed, using a Levenberg-Marquardt
algorithm. Recently, Auvrayet al. proposed in [26] an algorithm based on equation (7). The method
is also multi-resolution, uses a simplex algorithm for its initialization and adds a postprocessing step,
especially efficient when the two velocities are “close”.

The approaches described above are based on a single higher order constraint designed to “react”
to multiple motions. In the other hand, a series of methods have been developed by incorporating
several single, low order, motion constraints. When dealingwith transparency, they all use an essentially
unmentioned idea of a local dominance of one of the layers in some spatiotemporal neighborhood of the
image sequence. These local dominances are scattered in theimage plane/volume and are associated with
different layers at different positions. We will now describe a few of these approaches.

In the robust statistics approach of Black and Anandan [27], the transparency is treated through
a segmentation approach. The image plane is assumed to be partitioned into regions, each but one
corresponding to a parametric motion modelu = u(a), a being the parameter vector for the region.
This is done by iteratively estimating on a regionOi a dominant motionu(ai), the inlier pixel regionRi

for that motion and the outlier regionOi+1 = Oi −Ri, providing, aftern iterations the decomposition

R1 ∪R2 ∪ . . .Rn ∪ On

whereRi moves with velocityu(ai), i = 1 . . . n andOn is the final outlier region. In their paper, they
apply the strategy to a image pair(I1, I2) with n = 2. The motion parametersa1 anda2 are then assumed
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to represent the motion of two layers that cover the entire image plane. These layers are recovered by a
nulling process

L2 = I2(x − u(a1)) − I1

L1 = I2(x − u(a2)) − I1.

The authors describe the process as a “no-model” one (with respect to transparency) and as a limited
one. It is however clear that authors assume that transparency is due to superposition of moving patterns,
through the ways these patterns are recovered, via a nullingprocess similar to the one of [10].

Mixture models for multiple motion computation have been introduced by Jepson and Black in [28],
[29]. A parametric layered flow model is considered. One assumes that the motion can be explained by
up toN parametric motion fields with parameter vectors~an. As input, one uses motion vector constraints
as mention above, and the probability of observing constraint ~cr at locationr, assuming velocity layern
is given bypn(~cr|r,~an). In order to take outlier measurements into account, a modelfor it is added in a
“zero-th layer”p0(~cr). Assume then that each layer is given the probabilityαi of being selected (including
i = 0 and thus requesting that

∑N
i=0 αi = 1), then one can write the mixture model for a constraint~ck

p (~cr|r, (~ai)i=1...N , (αi)i=0...N) =
N

∑

i=0

αipi(~cr|r,~ai).

The problem is then to compute the best mixture and motion parameters(αi, ~ai)i. This is usually done
using EM-like algorithms.

Ju, Blacket al [30] proposed the “Skin and Bones” model, in which multi-layered affine models are
defined on small rectangular patches of the image (bones), then an ownership field defines the likelihood
that each pixel comes from a particular layer. The goal is to solve for the affine model parameters and
the ownership field. This is done within a robust estimation framework using an EM-algorithm. An inter-
patch regularization (skin) term introduces a regularization effect in the model parameters estimation.
Another layered representation is proposed by Blacket al. in [31]. In that approach, they consider that
multiple motions may appear due to occlusions and limited forms of transparency. The method introduces
models for illumination changes and specular reflections, and allows one to eliminate them, improving the
computation of the optical flow of the scene. In this formulation, a set of membership weights are computed
in order to indicate which layer is more likely to belong to a region. Although the method captures the
changes in illumination, it does not allow to compute the optical flow of moving transparencies. Weiss
and Adelson [32] and recently Rivera et al. [33] proposed EM-based approaches for computing different
layered motion models in an image sequence and its segmentation based on these models. They use
as prior knowledge the smooth feature of the velocities. Thesolution in such cases is given by a field
of probabilities measures that indicates layers ownership. Last methods produce pixel-wise unimodal
solutions (single motions) because of the use of a distance measure for single motions as well as their
entropy controls.

This section has focused on optical flow recovery and does notinclude some of the related questions,
and the especially important one of layer recovery, at the exception of [21], [22]. We mention here the
work of Toro et al. [34] where the knowlegde of motion is fundamental, as opposed to to work of Sarel
and Irani [35], where such a separation is performed by optimizing some correlation measures. Also non
mentioned here are the perceptual/neurophysiological aspects of transparency.

III. PROBLEM STATEMENT: FROM LOCAL TO GLOBAL

Let us assume that we have an estimation of the likelihood of aset of velocities at each spatio-temporal
position. Our goal is to propose an approach which integratethis local velocity information in order to
get a more global and robust velocity information. This integration is necessary for dealing with complex
motions (such as transparent motion sequences) and with thenoise, as we will see in the sequel.



CIMAT, COMUNICACIÓN TÉCNICA. 8

First, let is define a finite sampling of the velocity space, i.e. we considerN vectors

{u1, . . . , uN},
describing the set of possible velocities (such a predefinedfinite sampling of the velocity space is inspired
in the human visual cortex where the different cells are tuned to a specific velocity).

Given a gray-scale image sequencef : (x, t) ∈ Ω× [0, T ] → R, the input is set of functionsd(f, r, ui) ∈
R

+|i=1...N , wherer = (x, t) stands for the spatio-temporal coordinates, describing ateach position if the
velocity ui is likely, at alocal scale, at the positionr. We show in Figure 1 an illustration of a the velocity
space representation and we refer to Section III-A for the estimation of d(f, r, ui).

Fig. 1. Example of a velocity space composed by 33 velocity vectors, specified through their magnitudes and orientations, respectively
{0, 1, 2, 3, 4} pixels and{0, π

4
, π

2
, 3

4
π, π, 5

4
π, 3

2
π, 7

4
π} radians. The color indicates the likelihood of each velocity.

The goal is to compute the velocities (one or more) at each spatio-temporal positionr. For this, we
will associate to each possible motionui a variableαi(r) which indicates if such a model is present or
not in r. In order to obtain a robust solution, we perform an integration process over the local information
provided byd and introduce prior constrains about the possible number ofsimultaneous motions inr.
This will be explained in next subsections.

A. Computing Local Velocity Information

We first introduce here the general mechanism we have used in order to select the local velocity
descriptors from multiple motion operators. We assume thatwe are given a family of such operators

M = {M (k)(ui1 , . . . , uik), k = 1, . . . N, i1 < · · · < ik}
where M (k)(ui1 , . . . , uik)f(r) ≈ 0 if the velocity vectorsui1 , . . . , uik explain the motion of the image
sequencef at ther position. In the case we concern herek = 1, 2. For each vectorui in the base of
velocities , we consider the subsetMui

of all the operators involvingui and define

d(f, r, ui) = min
M∈Mui

1

k
‖Mf(s)‖2

Wr
, (8)

where‖Mf(s)‖2
Wr

denotes the sum of the L2-norm ofMf(s) for all s in the3×3 spatial window center
at r.

When dealing with one motion (k = 1), two well known filters satisfy these requirements, the non-linear
correlation:

M
(1)
C (ui)f(x, t)

def
= f(x, t) − f(x − ui, t − 1), (9)

and its differential counterpart

M
(1)
D (ui)f(x1, x2, t)

def
=

(

ui1
∂

∂x1

+ ui2
∂

∂x2

+
∂

∂t

)

f(x1, x2, t).

Shizawa and Mase proposed in [4] to build multiple motion operators for velocitiesv1, . . . , vk as

M (k)
sm (v1, . . . , vk) = M

(1)
D (v1) . . . M

(1)
D (vk)
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where products of the form∂
∂x

∂
∂y

are expanded as∂2

∂x∂y
.

On the other hand, cascading instead the nonlinear correlation filters M
(1)
C provides the operatorM (k)

s ,
for instance fork = 2 we have

M (2)
s (v1, v2)f(x, t) = f(y, τ)−f(y − v1, τ − 1)−f(y − v2, τ − 1)+f(y − v1 − v2, τ − 2),

that corresponds to distance reported in Stuke et al. [3].
The local measurementsd(f, r, ui) used in this work have been derived fromM (1)

D , M
(1)
C , M

(2)
sm and

M
(2)
s , and we, therefore, place us in the additive framework modelof [10].

B. Objective: Motion Detection Variables

Based on the previous discussion, we define the problem unknowns as the vector valued fieldα such
that a vector in ther position is

α(r) = (α1(r), . . . , αN(r)), αi(r) ∈ [0, 1] ∀r ∈ Ω × [0, T ],

thereforeαi(r) can be interpreted as the probability of observe the velocity ui at the positionr. Note that
although the entries ofα(r) are probabilities,α(r) is not a probability measure (as in [32], [33]) in the
sense that it is not constrained to sum one. This is, if two motions ui anduj are present at a particular
pixel position,r, then we expect that both associated probabilitiesαi(r) andαj(r) will be close to one.

In Section IV, we propose an approach for computing theα vector field by means of a variational
integration process of the local informationd(f, r, ui) (eqn. (8 )).

IV. GLOBAL MOTION INTEGRATION VIA A VARIATIONAL APPROACH

Let d(f, r, ui) defined as in Section III-A, we look for the velocity distribution minimizing the energy

E(α) =
∑

r

{

∑

i

d(f, r, ui)α
2
i (r) (10)

+
λs

2

∑

s:s∈Nr

∑

i

wi(r, s)[αi(r) − αi(s)]
2 (11)

+λc

[

cᾱ2(r) −
∑

i

α2
i (r)

]

}

, (12)

subject toαi(r) ∈ [0, 1],∀i;

with ᾱ(r)
def
= 1

N

∑

i αi(r), wherec is a positive scalar,λs andλc are some positive constants, the weights

wi(r, s) will be defined in the sequel andNr
def
= {s : r, s ∈ Ω× [0, T ], ‖r− s‖ < 2} is the spatio-temporal

neighborhood of ther position.
Before going more into details, let us give a general idea on the meaning of each term. The first term

(10) is called the attach term since it links the input (the functionsd’s) to the unknownα (see Section
IV-A). The second term (11), see Section IV-B, is a smoothing term and its role is to integrate local to
global motion estimation. The last term (12), see Section IV-C, gives a prior that controls the number
of active motion layers. The compromise between the last term and the attach term introduces a motion
model competition mechanism.

A. Attach Term

In order to compute the presence of thei-th model, we use an approach related with the outlier rejection
method [36] and with the EM formulation [31], [32], [33], [30]. Remind that functiond(f, r, ui) is close
to zero when the velocityui explains correctly the motion at positionr, and is a positive large value
otherwise. Minimizing term (10) with respect toαi(r) producesαi(r) close to 0 for highd(f, r, ui)
values, indicating in this way that such a motion model is notlikely at positionr. Otherwise, theαi(r)
is free and its value is established by the next terms and the bound constraint.
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B. Spatial Regularization

Term (11) allows us to integrate the local information by regularization, in order to obtain a more global
estimation. In the previous work of Stukeet al.[5] was noted the necessity of a spatial regularization
process. However, given that their approach is based on the computation of categorical variables, hard
(combinatorial) optimization methods are required, for instance the computationally-expensive Gibbs
Sampler algorithm.

Differently, in our approach, spatial–temporal smoothness means that we want to diminish the difference
between the real valued vectorα(r) and the onesα(s) in its neighborhood,Nr. Given that our indicator
variables are real valued, we can use differentiable potentials with the well-known algorithmic advantages.
We use the approach presented in [37] for achieving such a regularization, i.e. a directional one. Therefore
the smoothing process is controlled by directional fixed weights,

wi(r, s) =
(s − r)T Īi (s − r)

‖s − r‖4 ,

generated from theith tensor associated to theith velocity model:̄Ii = γId+UiUi
T , whereId is the identity

matrix, γ = 0.1 andUi = [ui1, ui2, 1]T /‖[ui1, ui2, 1]‖ is a homogeneous-coordinate unitary vector. For a
small γ values these weights,wi(r, s), promote a strong smoothness along theith velocity direction, see
[37]. This is illustrated in Figure 2. As consequence piece-wise smooth optical flows are recovered and
the boundaries are well-defined along the velocity model (see results in Figure 6).

u ir

s

Fig. 2. The diffusion coefficientswi. The diffusion process is performed in the spatio-temporal neighborhood of a given pointr, according
to the associated velocityui. The domain of influence is schematically represented by the circles. Thestrength of the influence of the point
r to the points then depends on the spatio-temporal distance betweenr ands, taking into account trajectories leavingr with speedui.

C. Intra-Model Competition

To introduce the intra-model competition prior, fundamental in our approach, we first remind the
expected behavior of the attach term (see Section IV-A): if velocity ui explains locally the motion at
position r, thend(f, r, ui) is small and consequently the correspondingαi value is not penalized. Since
our aim is to detect multiple simultaneously motions (transparent motions) and therefore we may have
severalα’s switched-on at a given position. Thus we may have problemsat sites where multiple spurious
matches are locally detected, for example in homogeneous regions, whered(f, r, ui) is small for many
(maybe all) the velocities. For this reason we need a mechanism for eliminating spurious models (to
switch-off α’s) and to promote the valid ones, i.e., to recover almost binary solutions. So that, our intra-
model competition term should behave similarly to entropy-control potentials (as the Shannon’s or Gini’s
used respectively in [32], [33]) in the sense of remove spurious models. Although, in our case we need
a suitable term for a no measure of probabilities and multi-modal solutions (see subsection III-B).

Thus, we use the contrast potential (12) that depends on theα(r) mean value and the parameterc. The
c parameter is very useful for controlling the number of switched-on models as will be explained bellow.

To understand the potential’s behavior, one can see that thefirst term penalizes the number of switched-
on models while the second term promotes to switch-on modelsand avoids the trivial solution: zero.
Therefore for a fixed mean value (controlled by the first term)the second term prefers high contrasted
solutions. It is important to note that our potential (12) can be tuned such that for a givenc value
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a multimodal solution (with two or more detected motions) has lower energy than a unimodal one or
conversely. That makes an important distinction with respect to entropy based measured that always have
lower energy for unimodal solutions [32], [33]. Additionally, our proposed potential, based on quadratic
terms, is easily differentiable and therefore simple minimization algorithms can be used, for instance a
Gauss-Seidel scheme.

V. EXPERIMENTS

A. Algorithmic Details

Cost functionE(α), defined by (10)–(12), is quadratic so that it can be minimized by solving the linear
system

∂E(α)

∂αi(r)
= 0, ∀i,

with the constraintαi(r) ∈ [0, 1]. This is achieved with a Gauss–Seidel iterative scheme,

αi(r) =
λs

∑

s∈Nr
wi(r, s)αi(s) − cλcᾱ

(prev)(r)

d(f, r, ui) + λs

∑

s∈Nr
wi(r, s) − λc

, (13)

that has the advantage of low memory requirements. The boundconstraints onαi(r) are enforced by
projecting non-feasible values to bounds at each iteration. We noted that for obtaining a smooth algorithm
convergence, was important to keep fixed the mean of the previous iteration,ᾱ(prev)(r), for updating the
currentα(r) vector. This can be seen as an over-relaxation strategy. We initially set αi(r) = 0.5,∀i, r.

Additionally, a Deterministic Annealing strategy in theλc parameter introduces theintra-model com-
petition once an approximate solution with valid representative models have predominantαj(r) values.
For each iterationk = 1, 2, . . . , n, we usedλ

(k)
c = λcak, where λc is the chosen contrast level and

ak = 1 − 0.95(100k/n) is a factor that increases to 1 in the approximately 90% of thetotal number of
iterations,n. This deterministic annealing process ensures that the intra-model regularization term (12) is
fully active only when a preliminary solution is available.We note that the computed results are sensible
to the annealing speed ofλc: a premature increment could lead us to an incorrect solution. Nevertheless,
we used the same annealing scheduling in all our experiments.

The tuning for the spatial regularization parameter is relatively easy: the largeλs value eliminates noise
but a too large value over-smooth the solution, i.e. the motion boundaries are blurred. We found thatλs

∈ [50, 100] produced an adequate noise reduction in all the experiments.
According to our experiments the parameterc = 1 performs well for most noise-free synthetic sequences.

When one is processing noise-contaminated or real sequences, several spurious models may be present
in the final solution because of false matches. So that, the prominent models are obtained by increasing
this parameter within the small interval1 ≤ c ≤ 4.

One example of the used velocity basis is the one composed by 33 velocity vectors, specified through
their magnitudes and orientations, respectively{0, 1, 2, 3, 4} pixels and{0, π

4
, π

2
, 3

4
π, π, 5

4
π, 3

2
π, 7

4
π} radians,

see Figure 3. We choose it according to the present displacements in our test sequences, but a different
basis can be chosen depending on the problem. This change does not affect significantly a previous
parameter selection.

B. Global Coherent Motion Estimation for Non Transparent Motion Sequences

In this subsection, we experiment with non transparent motion sequences. The first example deals with
the aperture problem and motion integration, while the second illustrates the performances of our algorithm
on a real sequence.
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A

B

A

B

Fig. 3. Translating bar example. We show theα’s evolution (small squares denote the associated velocities) for the iteration number 1, 3,
5 and 10, for the 2 points marked in the figure on the left. The pseudocolorscale for the range in the alpha values [0,1] is shown to the
right-hand side.

1) Minimization Procedure Performs Motion Integration:The first experiment concerns single motion
sequences and it shows how a correct global estimation is obtained based on local velocity estimations.
This integration is illustrated with a synthetic sequence that consists of an oblique bar translating in the
horizontal direction (Figure 3).

Interestingly, some psychophysics studies show how motionintegration is performed in tracking tasks.
In [38] is shown that the eyes will first follow the normal direction of the bar, according to 1D motion
detectors. Then, after few milliseconds, there is a correction of the pursuit toward the horizontal direction,
once 2D cues from ending points are integrated (That is illustrated by Figure 3 region B). These kind of
experiments suggest that there is a parallel processing between 1D and 2D motion signal with different
temporal dynamics and that some time is needed to extract from them a stable response.

Figure 3 shows the evolution of the probabilitiesα at two given spatio-temporal location, depending
on the convergence of the energy minimization. The integration phenomenon can be observed, so that the
iterations of the optimization procedure can be interpreted as time evolution in real experiments.

2) Non Transparent Multiple Motion Sequence.:Figure 4 shows an example of the computed result with
our algorithm on a real sequence, calledcoastguards . The background moves roughly horizontally
to the left, while the foreground object, a coastguard boat,moves roughly to the right. For comparison
purposes some results computed with standard variational approaches [1], [2] are displayed. Figure 4
(b) shows the flow corresponding to the most probable velocity at every position. The orientation of the
solution is color-coded: the color associated to a each orientation is shown in the border of the image,
for instance, a red pixel in the image indicates a motion to the left. In this case, as expected, unimodal
solutions are obtained.

(a) (b) (c) (d)

Fig. 4. Optical flow in real scene (single motion case). (a) One frame ofthe coastguard sequence. Results computed with (b) our approach,
(c) Horn and Schunck method [1] and (d) Aubert et al. approach [2].

C. Global Coherent Motion Estimation for Transparent Motion Sequences

In this subsection, we present several experiments for transparent motions. The first sequence used is
a synthetic one, the three next ones were artificially created from real photographs while the last one is
a natural sequence with transparency and occlusions..
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1) Illustration of the Local Measurements.:The Figure 5 (a) shows a synthetic sequence with transpar-
ent motion similar to the one used in [5]. The sequence dimensions are54× 54× 16 and it is composed
by a moving background (with velocitŷu = [0,−1]) and an overlapped moving transparent square (with
velocity v̂ = [1, 0]). Now we demonstrate how local measures could be highly disturbed by noise in
the acquisition process. By looking only in the distance measures, several incorrect movements could be
considered as valid candidates in each position. For instance, Figures 5(b) and 5(c) shows the present
movements associated to the minimum distance value, for theStuke distance [3] and the Shizawa distances
[4], see Section III-A. The data were noise corrupted with a Signal to Noise Ratio (SNR) equal to 30. As
one can see, the quality of this first approximation is poor i.e., several incorrect movements are detected
and so that a regularization process is required, which is discussed in the next paragraph.

2) Regularization of Local Measurements.:As mention above, consider the synthetic sequence shown
in Figure 5(a). Gaussian noise has been added in order to evaluate the robustness of our proposal. Figures
5(d)-(i) shows the results for a frame. Note that the method can deal with a strong noise corruption, as
a SNR=10, and shows better performance than the approach reported in [5] (see Figures 5(j) and 5(k)).
Note that our method produces relatively good results even for a extreme corrupted sequence, as the
one shown in Figures 5(f) and 5(i). For comparison purposes,Figures 5(j) and 5(k) show the computed
optical flow with the method reported in [5] for the fixed velocities basis defined in Section III-B. The
noise-free case is shown in Figure 5(j), and the case SNR=30 isin Figure 5(k). In that case, a hard
optimization is performed by using the computationally expensive Gibbs Sampler algorithm. The shown
results correspond to the computed solution after 150,000 iterations (about 2.5 hours, in a PC Pentium IV,
3.0 GHz) and represent 150 times than the computational timerequired by our approach. Furthermore,
we observe a bad performance of the method in [5] when the sequences are noise corrupted [see result
in Figure 5(k) and compare with the one computed with the proposed method in about 1 minute shown
in Figure 5(l)].

We can verify that our spatial regularization, jointly withour intra-model competition, develops well
in order to separate the velocities that are present in a region. Figure 6 shows the evolution of the layer
associated with velocity [1,0]. Note that the layer takes a significantly large value [by growing from small
values (red-yellow) to 1 (blue)] in the square region and that the contribution of this layer is completely
eliminated in the background region.

3) Realistic Texture Sequences:It is important to note that high textured sequences are relatively easy
to solve using local motion measures. The real performance of a method for transparent motion should
be evaluated in realistic textured scenes: recovering transparent motion in sequences with homogeneous
regions presents difficulties because several models may locally explain the data. We have tested our
approach using a series of experiments, where we use both synthetic and real image sequences.

For the aim of comparison, we tested the method in the sequence shown in figure 7, which is similar
to the one presented in [24]. In this sequence, the left imageis moving with velocityû = [1, 0] and the
right image is moving with velocitŷv = [−1, 0]. The transparent region corresponds to the area where
the two images overlap. The sequence have dimensions64 × 64 × 20 The results for the frame 8 are
shown in figure 7. Figure 7a shows the recovered map for 1 or 2 movements, the white regions indicates
the presence of 2 movements and the black ones indicates the presence of 1 movement. Figure 7b shows
the recovered multi-velocity field. For the sake of clarity,we show separately the recovered field for the
velocity [1,0] in Figure 7c and the recovered field for the velocity [-1,0] in Figure 7d.

The second one presented here is composed of two photographs: a face (limited textured scene) and a
Mars landscape, see Figure 8. Figures 9(a) and 9(b) shown thecomputed optical flow associated to the
minimum distance value for the Stuke and Shizawa distances,respectively. We corrupt the sequence with
a strong noise (SNR=8) (Figure 9 (c)), and the computed velocities field is shown in Figure 9 (d). For
this experiment the distance of Shizawa’s work was used in the attach term. Note that the right optical
flow is recovered in all the pixels regardless the high amountof noise. Figure 10 represents the evolution
of one of the two active layers, in this case the one associated with the velocity [-1,0]. One can observe
that gaps corresponding to non-textured regions are correctly filled.
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(a) (b) (c)

(d) SNR=30 (e) SNR=10 (f) SNR=6.5

(g) SNR=30 (h) SNR=10 (i) SNR=6.5

(j) (k) (l)

Fig. 5. First row: performance of the two local motion estimators. (a) noise-free frame. (b) Non-regularized velocities for [3] distance
(SNR=30) and (c) for [4] distance. Second and third rows: Our results for different amounts of Gaussian noise, as input we used [3] distance.
Figures (d)-(f) velocity fields and Figures (g)-(i) number of motions per pixel: in (g),(h) white = 2 velocities, and black = 1 velocity. In
Figure (i) white = 3 velocities, gray = 2 and black = 1. Last row: the Gibbs Sampler (GS) scheme [5]: (j) results in noise-free sequence and
(k) in a noise-corrupted one (SNR=30). (l) same than (d), but sampled for comparison with (j) and (k).
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Iteration 1 Iteration 11 Iteration 31 Iteration 200

Fig. 6. Evolution for the layer associated with velocity [1,0]. For this experiment the sequence was strongly corrupted noise (SNR=15).
We show the layer values in the pseudo–color scale shown in the left. Note that the presence of the movement [1,0] in the background is
pushed to zero because the spatial regularization and the intra-model competition mechanism of the algorithm.
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(c) (d) (e)

Fig. 7. Results for the transparent sequence (a)

Figure 11 shows the methods performance for the case when thetransparent region is composed by
different combinations of velocities across the time and when the image layers contains non-textured
regions (realistic ones). Figure 11(a) shows a frame of the transparent sequence. The changing velocities
are schemed in Figure 11(b): the background is moving with velocity [-1,0] and the airplane is moving
with velocity [1,-1], [1,0] and [2,2] in equal time intervals1. The obtained multi-velocity vector fields are
shown in Figures 11(c), 11(d) and 11(e). For this experimentwe used the Stukes’s distance [3] in the
attach term.

4) Transparency and Occlusion in a Real Sequence:In order to show the performance of the proposed
method in a real situation, we shown the results obtained fora real sequence in Figure 12. The sequence
is composed by two robots moving slope down, see Figure 12(a), 12(b) and 12(c)2. The upper-left robot

1The data sequence and the results can be downloaded at the public web sitehttp://www.cimat.mx/˜mrivera/vision/
transparent_sequences/index.html .

2the AVI file and the computed flows can be downloaded at the public web sitehttp://www.cimat.mx/˜mrivera/vision/
transparent_sequences/index.html .
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is located behind a glass, the lower-right one is located in front of the camera and the reflex of the second
one is located into the upper-central part. The associated resultant vector fields are shown in Figures 12(d),
12(e) and 12(f) for the 3th, 12th and 22th frame respectively). The recovered velocities were [1.5, 0.4]
pixels for upper-left robot and [-1.5,0.5] for both the lower-right robot and its reflex. Note that despite the
fact that the lower right-robot is moving a little faster than its reflex (easy to deduct form the projection
geometry), both were associated to the same velocity model,because the discrete nature of the velocity
basis.

In this experiment, we perform a spatio-temporal Gaussian smoothing process (σ = 0.5) of the input
sequence and we processed only the regions that contain displacements as is explained below. The static
background was removed automatically by thresholding the difference between consecutive frames, and
then applying opening-closing morphologic operators. By using this pre-process, we obtain an activity-
mask that indicates the pixels where a change in time occurred, i.e. the regions where the optical needs
to be computed.

In all previous experiments, we computed a dense optical flowin at most 200 minimization iterations.

VI. CONCLUSION

In this report we have presented an energy cost formulation in order to estimate multiple motions. The
unknown is a vector valued field that indicates the present motions in a particular spatio–temporal position.
Our formulation extends previous works based on layered optical flow computation, by using a distance
measure suitable for transparent motions and proposing an intra–model competition mechanism proper for
multi–valued solutions. The proposed intra–model competition mechanism behave for the multi–motion
case, as those used for entropy–control in probability measure approaches for single motion, this term is
by itself a novel contribution of this work.

Our formulation allows us to tackle sequences having singleor multiple layers moving. The optimization
process makes the integration of local velocities information by using suitable diffusion terms. The
performance of the presented approach is demonstrated by synthetic experiments in textured and non-
textured sequences as well as real sequences.

In future work it is planned to focus on the diffusion terms and investigate how the different velocity
maps may interact together. We wish also to evaluate our approach on test sequences used in psychophysics,
which will certainly suggest some improvement of the current model.

VII. A CKNOWLEDGES

The authors were partially supported by CONACYT, Mexico: A. Ramirez-Manzanares (Scholarship)
and M. Rivera (grants 40722 and 46270).

REFERENCES

[1] B. Horn and B. Schunck, “Determining Optical Flow,”Artificial Intelligence, vol. 17, pp. 185–203, 1981.
[2] G. Aubert, R. Deriche, and P. Kornprobst, “Computing optical flowvia variational techniques,”SIAM Journal of Applied Mathematics,

vol. 60, no. 1, pp. 156–182, 1999. [Online]. Available: ftp://ftp-sop.inria.fr/robotvis/pub/html/Papers/aubert-deriche-etal:99.ps.gz
[3] I. Stuke, T. Aach, E. Barth, and C. Mota, “Estimation of multiple motionsby block matching,” in4th ACIS International Conference

onSoftware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2003), 2003, pp. 358–362.
[4] M. Shizawa and K. Mase, “A unified computational theory for motion transparency and motion boundaries based on eigenergy analysis,”

in Proceedings of the International Conference on Computer Vision and Pattern Recognition. Lahaina, Hawai: IEEE, June 1991, pp.
289–295.

[5] I. Stuke, T. Aach, E. Barth, and C. Mota, “Multiple-motion-estimation by block matching using MRF,” inACIS, International Journal
of Computer and Information Science, 2004.

[6] M. Orkisz and P. Clarysse, “Estimation du flot optique en présence de discontinuités: une revue,”Traitement du Signal, vol. 13, no. 5,
pp. 489–513, 1996.

[7] B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills, “Recovering motion fields: an evaluation of eight optical flow algorithms,”
British Machine Vision Conference, pp. 195–204, 1998.

[8] J. Barron, D. Fleet, and S. Beauchemin, “Performance of optical flow techniques,”The International Journal of Computer Vision,
vol. 12, no. 1, pp. 43–77, 1994.



CIMAT, COMUNICACIÓN TÉCNICA. 17
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(a) (b) (c)

Fig. 8. Realistic synthetic sequence. (a) limited-texture image,I1, with motionu = [1, 0]. (b) Rocky Martian landscape,I2, with motion
v = [−1, 0]. (c) transparent generated sequence withf = 3

5
I1 + 2

5
I2.

(a) (b) (c) (d)

Fig. 9. Transparent motion estimation on a realistic sequence corrupted with Gaussian noise. (a) Central frame highly noise corrupted
(SNR=8). Velocities associated with the minimum distance for (b) Stuke and (c) Shizawa measures (SNR=30). In (d) the result obtained
with the proposed method for the high corrupted sequence in (a) (SNR =8), note that we recovered the right velocities in all positions.

Iteration 11 Iteration 21 Iteration 31 Iteration 100

Fig. 10. Evolution in the values for the layer associated with the velocity [-1,0].
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(a) (b)

(c) (d) (e)

Fig. 11. Results for a synthetic transparent sequence in which both the velocity of the background and the velocity of the object changes
across the time. (a) A frame taken from the sequence. (b) Scheme of velocities: the airplane experiment velocities [1,-1],[1,0] and [2,2], and
the background experiment the velocity [-1,0]. (c), (d) and (e) Sampled recovered multi-velocity fields for frames 5, 23 and 39 respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 12. Experiment with a real transparent sequence. (a)(b)(c) Frames 3th, 12th and 22th of the real sequence: the upper-left robot is
moving slope down behind a glass, the lower-right on is moving slope downin front of camera and its reflex is captured in the upper–central
part. (d), (e), (f) Sampled recovered multi-velocity fields for the respective frames.


